Discovering Fiji’s native bees: hidden secrets in a biodiversity hotspot

Discovering Fiji’s native bees: hidden secrets in a biodiversity hotspot

Discovering Fiji’s native bees: hidden secrets in a biodiversity hotspot

Homalictus hadrander, one of the four described species previously known from Fiji.
PHOTO CREDIT: James Dorey

Fiji’s entomological diversity has historically been considered depauperate. Recent widespread DNA barcoding efforts, however, from the South Australian Museum, Flinders University, and University of South Australia, along with a flurry of undergraduate, honours, and PhD students, have helped to uncover some of the hidden secrets of biodiversity within this topographically complex archipelago. Since 2010, funding from the Australian & Pacific Science Foundation and Australian Commonwealth New Colombo Plan, along with support from students, has enabled fieldwork focused on collecting bees, wasps, and butterflies across all the major Fijian islands. Trekking up the tallest mountains, four-wheel driving across challenging terrain, and following the meandering rivers of inland Fiji has revealed that initial estimations of Fiji’s entomological fauna have been severely underestimated. DNA barcoding over 1,000 bee specimens has increased species richness estimates from 4 species (known since 1979) up to 26 endemic species in the genus Homalictus. Interestingly, 60% of these new species are only found above 800 m elevation which comprise a mere 2% of land area of Fiji, and they are often restricted to single mountain tops (Figure 1). From extensive DNA barcoding, mitochondrial haplotype diversity was used to explore the level of intraspecific gene flow in the widespread species of the genus (Figure 2).

Figure 1: (a) The number of species (species richness) plotted against land area available at each elevational gradient. (b) Map of Fiji showing the land area available. Colours correspond to those used in (a).

CREATED BY: Cale Matthews

These results also indicate that gene flow is being restricted within highland localities of the most widespread Homalictus species. Dispersal from a species home range does not appear to be occurring in Fiji, which may be presenting a contemporary model of speciation that is predominantly influenced by past climatic fluctuations. There is an estimated crown age of 400 ka for the initial Fijian Homalictus colonisation, which would result in the genus being present for several glacial cycles. During glacial maxima, cooler climates would be ubiquitous throughout Fiji, however during glacial minima and interglacial periods there is a distinction between cool highland and warm lowland climate. DNA barcoding results indicate that the largest diversification of this genus is concordant with the most recent glacial minima, as species that were freely dispersing during glacial maxima are forced to retreat into highland refugia. Combined with the inferred haplotype networks, these results indicate that restriction due to low thermal tolerance of lowland climate is driving the extraordinary highland species richness in Fiji.

 

Figure 2: (a) Haplotype network of all sequenced Homalictus fijiensis (N=358) coloured by sampling locality. Hash marks represent nucleotide changes between each haplotype. Shared haplotypes represented by circles with multiple colours. Circle outline representing highland or lowland sampling. (b) Sampling map of H. fijiensis coloured by geographic sampling locality.

CREATED BY: Cale Matthews

Further to the work on bees, we have also started barcoding Fiji’s butterfly fauna, along with the first-ever species of Gasteruption, a parasitoid wasp genus, found in Fiji. The species, Gasteruption tomanivi (Published in Zootaxa by PhD student Ben Parslow), was found at the peak of Fiji’s highest mountain. These discoveries have highlighted how little is known about the entomofauna of Fiji and how the use of DNA barcoding has helped to uncover Fiji’s hidden secrets of biodiversity.

 

Written by

Cale Matthews

Cale Matthews

School of Biological Sciences, Flinders University, Adelaide, Australia

James Dorey

James Dorey

School of Biological Sciences, Flinders University, Adelaide, Australia

Scott Groom

Scott Groom

School of Agriculture, University of Adelaide, Australia

Olivia Davies

School of Biological Sciences, Flinders University, Adelaide, Australia

Elisha Freedman

Elisha Freedman

School of Biological Sciences, Flinders University, Adelaide, Australia

Justin Holder

School of Biological Sciences, Flinders University, Adelaide, Australia

Ben Parslow

School of Biological Sciences, Flinders University, Adelaide, Australia

Michael Schwarz

School of Biological Sciences, Flinders University, Adelaide, Australia

Mark Stevens

Mark Stevens

School of Biological Sciences, Flinders University, Adelaide, Australia

PDF
https://doi.org/10.21083/ibol.v9i1.5482

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

[mc4wp_form]
Scat Raiders Unravel Animal-Plant Interactions in Lebanon Using DNA Barcoding Tools

Scat Raiders Unravel Animal-Plant Interactions in Lebanon Using DNA Barcoding Tools

Scat Raiders Unravel Animal-Plant Interactions in Lebanon Using DNA Barcoding Tools

Plant collection in Ehden Nature Reserve – north Lebanon. PHOTO CREDIT: Saint Joseph University

Lebanon is considered a hotspot for biodiversity in the Mediterranean basin likely due to its geographic position at the transition of two major landmasses (that is Eurasia and Africa). The Lebanese territory is divided between mountainous slopes with fertile valleys separating the two mountain chains that run parallel with the sea and the steppe areas in the north-east. Deep canyons and numerous rivers characterize this mountainous landscape.

These geomorphological regions give rise to many bio-climatic zones and several habitat types that are home to more than 9,116 described species (4,486 for fauna and 4,630 for flora from which 91 are endemic). However, major taxonomic groups like insects and fungi are understudied and taxa are underrepresented within public data platforms. For example, according to the Barcode of Life Data System (BOLD), only 345 Lebanese specimens with sequences are published, forming 151 BINs and, of these records, only 108 have species names.

In September 2018, the Faculty of Science at Saint Joseph University of Beirut joined the iBOL Consortium providing us with the opportunity to unravel Lebanese biodiversity by DNA barcoding both small and large mammals as well as the main trees and shrubs used in reforestation programs. We will also target endemic plant species.

Animals are a crucial component for the resilience of forest ecosystems and an important factor in forest restoration projects as they promote the sustainability of reintroduced plants, as well as seed dispersal. However, we still need to identify the animals present in restored areas.

Animal scat collection. PHOTO CREDIT: Saint Joseph University

In addition, knowing what each animal eats and which plant seeds are being dispersed is crucial for reforestation schemes that promote wildlife and ensure ecosystem sustainability. The information needed to study the diets of animals can be found hidden in their scat which contains not only the animal’s DNA, but also what that animal has eaten. With the powerful technique of DNA metabarcoding, we now have the necessary tool to efficiently unravel the genetic information hidden in animal scat. The DNA sequences obtained from such material are identified by comparison to a reference library of animals and plants of the Eastern Mediterranean countries.

 

Constructing the Reference Library: DNA isolation Photo credit: Université Saint-Joseph

Constructing the Reference Library – DNA isolation.
PHOTO CREDIT: Saint Joseph University

This reference library was prepared from leaves collected in the wild and from DNA isolated from dead animals found along roads or from private museums. Thus, we have generated sequences for 51 plants and 18 mammals. This study conducted in collaboration with the Smithsonian Conservation Biology Institute and the University of Otago is the first to employ a DNA dietary analysis on wildlife in the Eastern Mediterranean Region and explicitly considering the role of wildlife in ecological restoration processes. Our results will inform management strategies to help with the conservation efforts of these imperiled species.

Written by

Carole Saliba

Carole Saliba

Faculty of Science, Saint-Joseph University

Liliane Boukhdoud

Liliane Boukhdoud

Faculty of Science, Saint-Joseph University

Magda Bou Dagher Kharrat

Magda Bou Dagher Kharrat

Faculty of Science, Saint-Joseph University

doi: 10.21083/ibol.v9i1.5489

Read more about Lebanon:

iBOL SCIENCE COMMITTEE MEMBER RECOGNIZED AS “FACE OF EXCHANGE” BY U.S. STATE DEPARTMENT

Magda Bou Dagher Kharrat, a leader in DNA barcoding and conservation in Lebanon, has been named as a notable alumnus of the U.S. State Department’s International Visitor Leadership Program.

HOW BIOSCAN IS INSPIRING THE NEXT GENERATION OF RESEARCHERS

They were enlightened by the idea of discovering new species and by the possibility of doing so using DNA barcoding tools.”

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

[mc4wp_form]

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected.