The fly specimen that awaited a growing barcode community to be dusted off the shelves and given a name

The fly specimen that awaited a growing barcode community to be dusted off the shelves and given a name

The fly specimen that awaited a growing barcode community to be dusted off the shelves and given a name

The online barcode library facilitates the description of new Diptera genus with circumpolar Holarctic distribution

Reisa National Park, Norway. The type locality of a new fungus gnat species Coelosynapha loici.

PHOTO CREDIT: J. Kjærandsen

While it can take an average of 21 years between the discovery and description of a new species1, the challenges of relating known taxa and the scarcity of high-quality specimens make the description of a new genus even more difficult and time-consuming. Our paper recently published in the Biodiversity Data Journal introduced a new fungus gnat genus–Coelosynapha–demonstrating that despite a taxon being shelved for a long time after discovery, strong collaborative networks spanning many countries combined with the power of DNA barcoding are greatly changing the pace at which we catalogue life.

This story begins some 25 years ago when the late French entomologist Loïc Matile (1938–2000) sent Geir E.E. Søli (at the Natural History Museum in Oslo, Norway) illustrations and a brief one-page description of a potential new fly genus, belonging to fungus gnats of the family Mycetophilidae, based on a single specimen collected in Finland. Matile posed a seeming simple question to Søli, “Had this for years…What do you think?” Unable to do much with the scarce material, the specimen was shelved, twice, for even after more specimens were found in Finland in 2009 and sent to a specialist in the USA, no progress was made.

Growth of research ties and a reference library

During this time, the popular and widespread use of DNA barcoding has led to an accumulation of a substantial volume of sequenced insects on the Barcode of Life Data (BOLD) system. More than 65,000 specimens belonging to the fly family Mycetophilidae have been successfully sequenced. Some 1,100 of them have public barcodes, although more than 2,400 different Barcode Index Numbers (BINs) are assigned, which indicates that the majority of the species still remain unidentified beyond the (sub)family level.

In the Nordic region, strong scientific research ties grew during the early 2000s between the Swedish, Norwegian, and Finnish biodiversity information centres, taxonomy initiatives, and the Norwegian Barcode of Life (NorBOL) and Finnish Barcode of Life (FinBOL). These alliances are ensuring that the best taxonomic expertise is building up data in the reference library for local fauna on BOLD. Hence, the vast majority of some 6,500 DNA barcoded fungus gnats from the Nordic region have been identified to species level upon submission. The reference library is then painstakingly quality-checked and curated after barcodes and BINs are assigned. This has resulted in a high-quality reference library, now covering about 90 percent of up to 1,000 known Nordic species of the family.

The reference library gives us entirely new opportunities through machine identification of insect samples. Examples range from expanded taxonomic studies on the larger Holarctic fauna as in this study, to ecological studies on how fungus gnats function in our boreal ecosystems, to more applied stakeholder science ranging from management of unprotected and protected areas to monitoring insect populations and the often claimed decrease in insect diversity caused by disturbances like commercial land use, pesticides from agriculture, and climate change.

Holotype of Coelosynapha loici sp. n. (left) and Coelosynapha heberti sp. n. (right).
PHOTO CREDIT: J. Kjærandsen (left) & CBG Photography Group (right)

A new genus is born from treasures on BOLD

Continuing the exploration of fungus gnats, we obtained more specimens of the enigmatic new species first studied by Matile way back in the mid-1980s from several, mainly old-growth, coniferous sites across the Palaearctic Taiga; ranging from Norway in the west all the way to Chukotka in the Far East of Russia. Specimens of the new taxon from Russia and Fennoscandia (a region covering the Scandinavian Peninsula, Finland, Karelia, and the Kola Peninsula) were submitted for barcoding. We were surprised to find that the BINs assigned on BOLD indicated these specimens were the nearest neighbour to another unidentified, and very similar species sampled across southern Canada between 2004–2014 during the Centre for Biodiversity Genomics’ early efforts to barcode the insects of Canada2

Both species were assigned to a new genus named Coelosynapha. The first, Eurasian Coelosynapha loici, is named in honour of Loïc Matile. The second, North American Coelosynapha heberti, is named in honour of Paul D. N. Hebert, “the father” of DNA barcoding who led efforts to barcode the insects of Canada and currently leads the International Barcode of Life (iBOL) as the organization’s scientific director. Taken together it marks a celebration of the synergy emerging from traditional morphologically based taxonomy meeting a new integrative taxonomy including DNA barcodes in its toolbox. 

The newly described genus belongs to the subfamily Gnoristinae which appears to be amongst the most difficult branches of the Mycetophilidae to classify, which certainly added to the prolonged shelf life.

It marks a celebration of the synergy emerging from traditional morphologically based taxonomy meeting a new integrative taxonomy including DNA barcodes in its toolbox.

Highly variable taxa have led to numerous small genera with few species being segregated, as well as species-rich, polyphyletic genera sometimes called “trash bin” genera because they are derived from more than one common evolutionary ancestor or ancestral group and are therefore not suitable to be placed in the same taxon.

Morphologically Coelosynapha is most similar to the genera Coelosia and Synapha, hence its name, while genetically, species of these genera appear rather distant. As the new species epithets suggest, there is a need for more integrative taxonomic studies combining classical morphology with DNA barcoding.

The BOLD archive certainly hides many similar treasures waiting to be uncovered, but for that to happen morphological expertise needs to be invoked. Through our description of Coelosynapha, we hope to inspire this kind of integrative taxonomic work on the species-rich family of fungus gnats and aspire to further phylogenetic studies of the intriguing subfamily Gnoristinae.

References:

1. Fontaine B, Perrard A, Bouchet P (2012) 21 years of shelf life between discovery and description of new species. Current Biology 22 (22). doi: 10.1016/j.cub.2012.10.029

2. Hebert PN, Ratnasingham S, Zakharov E, Telfer A, Levesque-Beaudin V, Milton M, Pedersen S, Jannetta P, deWaard J (2016) Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society B: Biological Sciences 371 (1702). doi: 10.1098/rstb.2015.0333

Written by

Jostein Kjærandsen

Jostein Kjærandsen

Tromsø University Museum, UiT – The Arctic University of Norway Tromsø, Norway

Alexei Polevoi

Alexei Polevoi

Forest Research Institute of Karelian Research Centre of the Russian Academy of Sciences Petrozavodsk, Russia

Jukka Salmela

Jukka Salmela

Regional Museum of Lapland & Arctic Centre, University of Lapland Rovaniemi, Finland
December 4, 2020

doi: 10.21083/ibol.v10i1.6401

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected. 

GBOL III: Dark Taxa

GBOL III: Dark Taxa

GBOL III: Dark Taxa

Researchers launch new BIOSCAN project that aims to illuminate thousands of new insect species on Germany's doorstep.

A “pixelated” Diptera.

Currently, around 1.4 million species of animals are known. For tropical regions, many species are still unknown, with estimates of global biodiversity ranging from five to 30 or even 100 million species. More recent studies suggest that there are about 10 million species on our planet. In contrast to the tropics, the Central European fauna is considered to be very well studied. However, specialists have mostly concentrated on less diverse and easy-to-study organisms, neglecting the species-rich, often taxonomically difficult groups, like many Diptera and Hymenoptera. This led to a mismatch between high species numbers and a small number of researchers, often referred to as the ‘taxonomic impediment’. This is most prominent for the megadiverse faunas of tropical regions. Less known is that this also applies, to some extent, for countries with a long history of taxonomic research like Germany, covering 200 or more years. For example, for the compilation of the German checklist of Hymenoptera, 32 specialists were available for 247 species of digger wasps (Crabronidae), while for parasitoid wasps of the family Ichneumonidae one specialist had to deal with 3,332 species.

In Germany, about 48,000 species of animals have been documented, including about 33,300 species of insects. In little-studied groups such as insects and arachnids, preliminary results of earlier DNA barcoding initiatives indicate the presence of thousands of species that are still awaiting discovery. Among the groups with a particularly large suspected number of unknown species are the Diptera (flies) and the Hymenoptera (in particular, the parasitoid wasps). With almost 10,000 known species each, these two insect orders account for two-thirds of the German insect fauna, underlining their importance.

Bar Graph depicting availability of taxonomic expertise for major insects orders in Germany.

“Dark taxa” are, as a rule, small-sized and rich in species, and have therefore been largely ignored by taxonomists. This is reflected by the number of undescribed species in these taxa, combined with a low chance to get specimens identified by specialists.

The insight that there are not only a few but many unknown species in Germany is a result of the earlier German Barcode of Life projects GBOL I and II, both supported by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) and the Bavarian Ministry of Science (project Barcoding Fauna Bavarica). The projects aimed at making all German species reliably, quickly and inexpensively identifiable by DNA barcodes. Since the first project was launched about ten years ago, more than 25,000 animal species have been barcoded, in collaboration with national and international partners. Among them are mostly well-known groups such as butterflies, moths, beetles, grasshoppers, spiders, bees and wasps.

Two scatterplots demonstrating relationship between body size (top) and species richness (bottom) in German Diptera

Relationship between body size (top) and species richness (bottom) in German Diptera1

Despite their popularity, these groups represent only a fraction of the total inventory of German insects. In Germany there are 170 butterfly species, 81 dragonfly and damselfly species, 87 species of grasshoppers, katydids and crickets, and 580 species of ground beetles, all of which are well-studied. Taken together, these 918 species stand for only a small fraction (2.8%) of the German insect fauna. They are morphologically well identifiable, have manageable species numbers, can easily be monitored during daytime and are therefore regarded as relevant in nature conservation and often used for monitoring species diversity. Conversely, however, this means that the vast majority of the native species diversity has been largely ignored in nature conservation and in general and applied research.

Circular tree depicting Nematocera (midges) and Brachycera (flies)
A circular neighbour‐joining tree for the two suborders of flies, Nematocera and Brachycera1. Each line in the tree corresponds to a distinct Barcode Index Number (BIN). Whereas for two of the “big four” insect orders, the Lepidoptera and Coleoptera, the number of German species are very precisely known, the numbers for the Diptera and Hymenoptera must rely on rough estimates. 

This applies in particular to the Diptera (flies). The observation that estimates of the number of species of native Diptera have been far too low was not only a result of the DNA barcoding projects at the ZSM, but became clear in a recent study by Paul Hebert and his team2. In this large-scale study, DNA barcodes of about one million insects were analyzed. Based on this study, Canada’s gall midges alone are estimated to include about 16,000 species, suggesting the existence of at least two million species on earth. That would be more species of gall midges worldwide than all previously described animal species combined.

The little-known or unknown species, referred to as ‘dark taxa’, are the subject of another BMBF-funded DNA barcoding project that is being carried out at the ZSM in collaboration with other German natural history museums and institutions. The project focuses on Diptera and Hymenoptera (in particular, parasitoid wasps), each with a large proportion of ‘dark taxa’. The new project, funded by a grant of 5.3 million Euro, starts July 1st 2020, with 12 PhD students at three major natural history institutions in Bonn (Zoological Research Museum Alexander Koenig), Munich (SNSB – Zoologische Staatssammlung München) and Stuttgart (State Museum of Natural History Stuttgart), to address a range of questions related to the taxonomy of German ‘dark taxa’, targeting selected groups of Diptera and parasitoid Hymenoptera.

Detailed photo of a Eulophidae specimen
Yellow Mymaridae specimen

Small parasitoid wasps of the families Eulophidae (top) and Mymaridae (bottom), both group with possibly hundreds of new species in Germany that still await discovery.

Among the major aims of GBOL III is assessing of the performance of DNA barcoding for species identification of ‘dark taxa’, and assessing the species detection ability of DNA barcodes in mass samples that are obtained from metabarcoding studies. Other aims of the project include the development of a platform for managing OTU-based taxonomic data, developing a pipeline for reliable and fast barcoding of small and poor-quality samples, and training of the next generation of taxonomists.

GBOL III is designed to make an important contribution to the global BIOSCAN initiative of the Centre for Biodiversity Genomics. It helps to lay the foundations for a global biomonitoring system to record the biodiversity of our planet on a large geographical scale in times of rising temperatures, increasing weather extremes and receding ice, and to track its changes as a result of global environmental changes.

References:

1. Morinière J, Balke M, Doczkal D, Geiger MF, Hardulak LA, Haszprunar G, Hausmann A, Hendrich L, Regalado L, Rulik B, Schmidt S, Wägele J, Hebert PDN (2019) A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding‐based biomonitoring. Molecular Ecology Resources 19: 900–928. https://doi.org/10.1111/1755-0998.13022

2. Hebert PDN, Ratnasingham S, Zakharov EV, Telfer AC, Levesque-Beaudin V, Milton MA, Pedersen S, Jannetta P, deWaard JR (2016) Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150333. https://doi.org/10.1098/rstb.2015.0333

Written by

Axel Hausmann

Axel Hausmann

SNSB - Zoologische Staatssammlung München, Munich, Germany

Lars Krogmann

Lars Krogmann

State Museum of Natural History Stuttgart, Stuttgart, Germany

Ralph S. Peters

Ralph S. Peters

Zoological Research Museum Alexander Koenig, Bonn, Germany

Vera Rduch

Vera Rduch

Zoological Research Museum Alexander Koenig, Bonn, Germany

Stefan Schmidt

Stefan Schmidt

SNSB - Zoologische Staatssammlung München, Munich, Germany

July 10, 2020

doi: 10.21083/ibol.v10i1.6242

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected. 

Discovering ten new species of Paramyia Williston (Diptera: Milichiidae) in North America using DNA barcoding

Discovering ten new species of Paramyia Williston (Diptera: Milichiidae) in North America using DNA barcoding

Discovering ten new species of Paramyia Williston (Diptera: Milichiidae) in North America using DNA barcoding

Making the process of species identification more efficient by focusing morphological efforts using DNA-based tools

Flowering plant visited by Paramyia sp.
PHOTO CREDIT: Steve A. Marshall

The process of discovering and describing new species – the job of taxonomists – is time-consuming. To tackle the challenge, one must become an expert on a specific group in order to notice those rarities among the masses. This is without counting the added challenges of cryptic groups where the external morphology is of limited help as individuals often appear to belong to the same species despite being genetically distinct. In many cases, the taxonomist has to dissect hundreds of specimens to detect slight differences in their genitalia which are usually unique for each species. DNA barcoding can greatly assist any taxonomist by speeding up this laborious identification process, particularly with small flies like Paramyia Williston (Diptera: Milichiidae).

Flowering plant visited by Paramyia sp.

PHOTO CREDIT: Steve A. Marshall

Paramyia, a kleptoparasitic genus well represented worldwide, provides a perfect example of joining DNA barcoding and traditional taxonomy. Paramyia is a small genus, with under 30 described species, of tiny blackish flies, usually under 2mm long, with very similar external morphology. In the Nearctic, it was only represented by one species, P. nitens Loew. With that knowledge in mind, no particular attention was given to specimens collected in that geographic range. That is until multiple Barcode Index Numbers (BIN) were found on the Barcode of Life Data System (BOLD) under the same species name. This strongly indicated that multiple undescribed species may have been placed under one species – P. nitens. A closer look at their genitalia revealed this to be true, and so a revision of the genus was then needed.

Paramyia sp. displaying kleptoparasitism, that is, feeding on the captured prey (stink bug) of another predator (spider)

PHOTO CREDIT: Steve A. Marshall

As with any revision, I first acquired multiple loans from large museum collections to compare and study the many diverse and variable specimens from a specific geographic range, in this case, North America. Then, I studied the morphology of these specimens in-depth to detect variation between those grouped together based on their similarities (i.e, morphs) and dissected the genitalia to confirm if they were indeed new species. With a genus like Paramyia, most helpful characters to differentiate between the species are genitalic, which means that good dissection skills are essential. The skill needed to dissect the genitalia of such small flies is comparable to performing surgery on a baby’s tooth. Important to note, there are no morphology characters to split the females of most species apart.

This is where DNA barcoding comes in handy. I sequenced specimens from my different morphs, and then dissect males grouped in the same BIN to verify the correspondence between the BIN and the species concept. When the molecular and the morphological analysis align perfectly, females can get correctly associates with their male counterpart, which would have otherwise been impossible. Hence, the species description can be more complete and the sequences are available to be used by other researchers to correctly identified that group, e.g. in monitoring programs. I applied this process in the Nearctic revision of Paramyia and described 10 new species! Future revisions tackling the remaining geographic regions can build from this work.

Comparative morphology between the new species P. pseudonitens and P. brevikeraia with a body profile, frontal head and genitalia photos (top to bottom)

PHOTO CREDIT: Valerie Levesque-Beaudin

The taxonomic impediment coupled with the current rate of species extinction is making the job of the taxonomist increasingly more difficult and yet, there’s an urgent need to record species before they disappear. As this study demonstrates, by quickly sorting specimens based on morphology and sequencing representative of each group, the number of undescribed species can be assessed and the amount of dissection needed to make such a discovery can be managed. The focus can then be on the morphology and genitalia of the different BINs, hence speeding up the process of species identification.

For full details, please refer to the publication in Zootaxa.

Written by

Valerie Levesque-Beaudin

Valerie Levesque-Beaudin

Taxonomic Specialist – Diptera, Centre for Biodiversity Genomics

February 27, 2020
https://doi.org/10.21083/ibol.v10i1.6081

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

Related articles

DNA BARCODING WILD FLORA IN PAKISTAN’S FORESTS

by Nazeer Ahmed | Apr 7, 2019 | Research

DNA BARCODING AND GENOMICS IN THE MEGADIVERSE AMAZON ALTITUDE FIELDS

by Guilherme Oliveira, Gisele Nunes, Rafael Valadares, Ronnie Alves and Santelmo Vasconcelos | Apr 7, 2019

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected. 

A DNA Barcoding Review of the Entomofauna of Egypt

A DNA Barcoding Review of the Entomofauna of Egypt

A DNA Barcoding Review of the Entomofauna of Egypt

From insect diversity to pests to forensics, DNA barcoding plays a vital role in Egyptian biodiversity conservation and legislative protection efforts.
Egyptian hornet wasp (Vespa orientalis) predating on Dermaptera (Labidura sp.). PHOTO CREDIT: Mohamed Gamal

Egypt has more than 23,587 identified plant and animal species in addition to thousands of algae, bacteria, and viruses1, and this unique biodiversity contributes to Egypt’s economy and supports the welfare of its citizens. Agricultural production accounts for more than 10 per cent of Egypt’s GDP while tourism revenues from marine activities on the Red Sea represent more than 30 billion LE annually. Protecting threatened species such as dolphins, sharks, and dugong contribute by more than 61 million LE per year and the marine fish production is estimated to be worth 5 billion LE2. Therefore, Egypt has paid particular attention to the conservation and legislative protection of its natural heritage.

Joining its International Barcode of Life (iBOL) partners, Egypt has been using DNA barcoding to better understand and plan for protection of biodiversity. So far, Egypt has published 20,980 DNA barcode sequence records, 25 per cent (5,368) of which have species names that represent 695 species.

In this review, we present an overview of the DNA barcoding carried out on the Egyptian entomofauna and introduce current advances of this promising technique. This review focuses on three main areas that highlight studies investigating insect diversity and distribution, insects in forensic applications as well as pest and parasite dynamics.

Insect diversity and distribution: DNA barcoding has been used to investigate the genetic diversity of Egyptian wasp populations with a wide geographical range3. Three species, Vespa orientalis, Polistes bucharensis, and Polistes mongolicus were accurately identified by their DNA barcodes with the COI phylogenetic signal revealing interesting insights across Jordan, Giza, Cyprus, and Greece. Despite the wide geographical range, only minor genetic diversity was observed among populations of the three wasp species, indicating unrestricted gene flow. 

DNA barcoding has also been used in a larger-scale insect diversity investigation in the understudied Saharo-Arabian zoogeographic region, revealing significant heterogeneity between Egypt, Pakistan, and Saudi Arabia4. The year-long deployment of Malaise traps in these countries collected 53,092 specimens, including 18,391 from Egypt. The DNA barcode sequences revealed the occurrence of 3,682 BINs belonging to 254 families. These results reflect the high species richness of the area, encouraging further research into biodiversity monitoring for the region.

Insects in forensic applications: The Egyptian Forensic Medicine Authority, the leading authority on forensic medicine in Egypt, handles a relatively large number of cases annually and relies on laboratories for assistance with molecular techniques to ensure fast and reliable identification of species of forensic interest (e.g. necrophagous insects). To date, few studies in Egypt have evaluated the use of DNA barcoding in the identification and establishment of reference libraries for insect species of important post-mortem interval indication.

PHOTO CREDIT: Samy Zalat

Egyptian records of blow flies (Calliphoridae). Maggots (larva) are scavengers and adults are plant visitors.

PHOTO CREDIT: Ramadan Mounir

Aly & Wen5 studied the applicability of a 296-bp cytochrome c oxidase I (COI) sequence as a reliable mitochondrial genetic marker for the identification of forensically important flies following previous research showing the efficacy of a short COI marker in this group6. The study analyzed 16 species of blowflies (Calliphoridae), flesh flies (Sarcophagidae), and house flies (Muscidae) originating from Egypt and China and concluded that a shorter COI fragment is simple, cheap, and reproducible but lacks agreement with traditional morphological classification. In a follow-up investigation, Aly7 examined the reliability of long (1173-bp) vs. short (272-bp) COI markers for 18 species of the same 3 dipteran families from Egypt and China. The results indicated that the longer COI marker performed better than the shorter marker for dipterous identification due to better monophyletic separation and concordance with taxonomic classifications. A more in-depth survey of the genetic diversity of forensically important blowflies (Calliphoridae) revealed numerous haplotypes among 158 specimens collected from four locations in Egypt (Giza, Dayrout, Minya, and North Sinai)8. Three particularly important species (Chrysomya albiceps, Chrysomya , Chrysomya marginalis) were well-differentiated using COI supporting its use for subfamily-, genera-, and species-level identification of blowflies. Most importantly for forensics use, COI is highly effective at identifying different developmental stages of forensically important flies, including larvae, pupae, and even empty, otherwise difficult to identify morphologically. Five different species of Diptera and their immature stages from Alexandria, Egypt including Chrysomya albiceps, Chrysomya megacephala, Calliphora vicina, Lucilia sericata, and Ophyra capensis, were correctly identified using mitochondrial DNA markers9. Pest and parasite dynamics: DNA barcoding has also played an important role in the identification of pests and parasites. Seventeen species of mealybug pests (Hemiptera: Pseudococcidae) have been identified by DNA barcoding specimens collected from populations infesting various crops and ornamental plants in Egypt and France10. The genetic variation found between populations of the same species using a combination of three markers (28S-D2, COI, and ITS2) and morphological examination indicated cryptic taxa that might respond differently to management strategies. High diversity and rapid diversification were found in the head louse, Pediculus humanus (Pediculidae: Phthiraptera)11. P. humanus includes two morphologically indistinguishable subspecies: the head louse, P. humanus and the body louse, P. humanus. By analyzing sequence diversity of two mitochondrial genes (COI, cytb) in 837 specimens of Pediculus humanus from Egypt, Pakistan, and South Africa, high diversity and the occurrence of five mitochondrial lineages was revealed with implications for the spread of disease. Conclusion: DNA barcoding of crop pests and pollinators, in addition to disease-carrying insect-vectors, will continue to be the top priority for the Egyptian government. Egypt actively enacts laws, carries out research, increases public awareness, engages local communities in the management of protected areas, and implements projects funded by Egypt and other international donors to protect biodiversity. These motivations place Egypt in a valuable position among other countries joining iBOL in support of BIOSCAN, a project that will build a global monitoring system for the planet.

References:

1. Egypt’s Fifth Biodiversity National Report (2014). Ministry of Environmental Affairs, Cairo, Egypt.

2. Coastal and marine biodiversity in Egypt (2018). United Nations Convention on Biological Diversity Conference (CBD COP14), Sharm El Sheikh. Ministry of Environment.

3. Abdel-Samie E, ElKafrawy I, Osama M, Ageez A (2018) Molecular phylogeny and identification of the Egyptian wasps (Hymenoptera: Vespidae) based on COI mitochondrial gene sequences. Egyptian Journal of Biological Pest Control. 28: 36. https://doi.org/10.1186/s41938-018-0038-z

4. Ashfaq M, Sabir JSM, El-Ansary HO, Perez K, Levesque-Beaudin V, Khan AM, Rasool A, Gallant C, Addesi Jo, Hebert PDN (2018) Insect diversity in the Saharo-Arabian region: revealing a little-studied fauna by DNA barcoding. PLoS ONE 13(7). https://doi.org/10.1371/journal.pone.0199965

5. Aly SM, Wen J (2013) Molecular identification of forensically relevant Diptera inferred from short mitochondrial genetic marker. Libyan Journal of Medicine 8:10. https://doi.org/10.3402/ljm.v8i0.20954

6. Zehner R, Amendt J, Schutt S, Sauer J, Krettek R, Povolny D. (2004) Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae). International Journal of Legal Medicine 118(4): 245–247. https://doi.org/10.1007/s00414-004-0445-4

7. Aly SM (2014) Reliability of long vs short COI markers in identification of forensically important flies. Croatian Medical Journal. 55(1): 19–26. https://doi.org/10.3325/cmj.2014.55.19

8. Salem A, Adham F, Picard C (2015) Survey of the genetic diversity of forensically important Chrysomya (Diptera: Calliphoridae). Journal of Medical Entomology 52(3):320–328. https://doi.org/10.1093/jme/tjv013

9. Abdel Ghaffar HA, Moftah MZ, Favereaux A, Swidan M, Shalaby O, El Ramah S, Gamal R (2018) Mitochondrial DNA-based identification of developmental stages and empty puparia of forensically important flies (Diptera) in Egypt. Journal of Forensic Science & Medicine 4(3): 129–134. http://www.jfsmonline.com/text.asp?2018/4/3/129/242508

10. Abd-Rabou S, Shalaby H, Germain J, Ris N (2012) Identification of mealybut pest species (Hemiptera: Pseudococcidae) in Egypt and France, using a DNA barcoding approach. Bulletin of Entomological Research 102(5):515–523. https://doi.org/10.1017/S0007485312000041

11. Ashfaq M, Prosser S, Nasir S, Masood M, Ratnasingham S, Hebert PDN (2015) High diversity and rapid diversification in the head louse, Pediculus humanus (Pediculidae: Phthiraptera). Scientific Reports, 14188. https://doi.org/10.1038/srep14188

Written by

Samy Zalat

Samy Zalat

Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.

Mona Mahmoud

Mona Mahmoud

Nature & Science Foundation, Cairo, Egypt.

April 7, 2019
doi:10.21083/ibol.v9i1.5515

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected.