What can’t be measured won’t be managed: Scientists and U.S. Environmental Protection Agency work together to conserve the Great Lakes

What can’t be measured won’t be managed: Scientists and U.S. Environmental Protection Agency work together to conserve the Great Lakes

What can’t be measured won’t be managed: Scientists and U.S. Environmental Protection Agency work together to conserve the Great Lakes

The Great Lakes DNA Barcoding project brings together several international partners to understand the aquatic invertebrate biodiversity in the Laurentian Great Lakes
The Laurentian Great Lakes from space.

The Laurentian Great Lakes provide extremely valuable ecosystem services to nearly 40 million citizens of Canada and the United States who inhabit the watershed and many other visitors. These lakes are important for commercial navigation and are one of the most valuable freshwater commercial and recreational fisheries in the world. Such heavy use makes them vulnerable to invasive species, of which there are about 180 known to have invaded the five lakes1. However, the lakes’ biodiversity remains startlingly unknown, especially at lower trophic levels, even with strong scientific communities on both sides of the border.

The Great Lakes DNA Barcoding Project is using new and scalable genetic approaches to fill in the gaps in our knowledge of the native aquatic biodiversity of the Great Lakes and to detect previously undiscovered biological invasions. It will provide a baseline against which to monitor future changes in response to unintentional anthropogenic impacts and quantify efforts to restore biodiversity in parts of the lakes where it has declined.
The Great Lakes
The Great Lakes contain 21% of the world’s surface freshwater and are an important resource for agriculture, fishing, recreation, and international shipping. IMAGE CREDIT: 2013 National Geographic Society; Watershed defined by Great Lakes Aquatic Habitat Framework.

Understanding the impacts of anthropogenic changes on freshwater biodiversity is a major challenge with direct relevance to human health and well-being2. Monitoring and managing aquatic biodiversity needs to involve both academic and government institutions as well as stakeholders spanning farmers, fishermen, global transport companies, and policymakers in order to better inform environmental risk assessment, policy development, and natural resource management. Additionally, evaluating and improving private or public efforts to protect biodiversity requires an ability to quantify biodiversity, beginning with species richness.

The lack of scalable tools for assessing biodiversity has been a major impediment when monitoring the health of freshwater ecosystems. These habitats are dominated by small organisms that are difficult to identify and preserve. Species-level identification based on morphology is often impractical or sometimes even impossible. The process involves expert taxonomists and the special treatment of specimens requires significant investments in money, time, and labour. Therefore, when we rely only on these traditional survey practices, many organisms are identified only to genus/subfamily or simply neglected3,4.

DNA barcoding is a useful tool in these situations because the necessary taxonomic resources can be invested in a more targeted approach once a large number of specimens have been assigned a digital species identifier based on its DNA—the DNA barcode—to create a standardized, reproducible, and scalable solution for monitoring, otherwise difficult to quantify species. By digitizing taxonomic information in the form of a barcode, one needs not taxonomic expertise but simply access to sequencing technology for future identification and monitoring requirements. These technologies are becoming more portable and affordable every day and these tools become even more exciting when we apply non-invasive water sampling to monitor entire fauna from the trace amounts of DNA they leave behind (called ‘environmental DNA’)5.

The Great Lakes Barcoding Project, funded by the United States Environmental Protection Agency (EPA), aims to build a comprehensive genetic barcode library for aquatic invertebrates in the Laurentian Great Lakes watershed. The goal is to improve biodiversity monitoring, provide early detection of non-indigenous species, and inform management efforts to protect biodiversity from threats including climate change, pollution, and invasive species.

At the beginning of the project, only limited genetic information was available for many of the Great Lakes species6. The scale of the Great Lakes and its relatively large invertebrate biodiversity requires this research to be highly collaborative. To this end, the project has brought together several taxonomic experts, molecular ecologists, and aquatic biologists across USA and Canada, from the EPA and research institutions including Cornell University, Buffalo State College, University of Notre Dame, Central Michigan University, and the Centre for Biodiversity Genomics at the University of Guelph.

The Great Lakes DNA Barcoding Project team

The Great Lakes DNA Barcoding Project Team: Bret Coggins, Lars Rudstam, Susan Daniel, Adam Frankiewicz, James Watkins, Beth Whitmore, Joe Connolly; bottom row left to right: Sara Westergaard, Michael Pfrender, Bilgenur Baloglu, Kristy Deiner, Ed DeWalt, Alexander Karatayev, Christopher Marshall, Lyubov Burlakova (top to bottom, left to right). In attendance but not pictured: David Lodge, Kara Andres, and Jose Andres. George Rogalskyj and Erik Pilgrim joined electronically.
PHOTO CREDIT: The Great Lakes DNA Barcoding Project

 

At the end of February 2020, scientists as well as EPA representatives managing or participating in the project gathered at the beautiful Biological Field Station at Cornell University in upstate New York. We shared the latest project updates—everything from taxonomy to biodiversity, from ecological analysis to portable DNA sequencing, and the future of DNA-based monitoring. While the project is still in progress with hundreds of more specimens awaiting analysis, so far, our collaboration has resulted in over 1,000 DNA barcodes spanning over 300 invertebrate species.

This diversity includes more than ten taxonomic classes of invertebrates and is a resource that will improve tracking of non-native and native aquatic species, as well as clarify taxonomic inconsistencies or misrepresentations. The project has stimulated collaborations both within and outside of the main group of researchers and the sharing of specimens, resources, and, most importantly, new ideas and research directions has been an extremely encouraging and productive outcome.

Each plate of specimens sent away for DNA barcode analysis also contains a mix of feelings: satisfaction from a job well done, anticipation of the eventual results, and excitement around the new discoveries that may unfold.

References:

1. Great Lakes Aquatic Nonindigenous Species Information System. Retrieved from: www.glerl.noaa.gov/glansis/index.html

2. IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. ES Brondizio, J Settele, S Díaz and HT Ngo (editors). IPBES secretariat, Bonn, Germany.

3. Baloğlu B, Clews E and Meier R (2018) NGS barcoding reveals high resistance of a hyperdiverse chironomid (Diptera) swamp fauna against invasion from adjacent freshwater reservoirs. Frontiers in Zoology, 15(1)

4. Srivathsan A, Baloğlu B, Wang W, Tan WX, Bertrand D, Ng AH, Boey EJ, Koh JJ, Nagarajan N and Meier R (2018) A MinION™‐based pipeline for fast and cost‐effective DNA barcoding. Molecular Ecology Resources, 18(5): 1035–1049.

5. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière‐Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, De Vere N and Pfrender ME (2017) Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21): 5872–5895.

6. Trebitz A, Sykes M, Barge J (2019) A reference inventory for aquatic fauna of the Laurentian Great Lakes. J. Great Lakes Res.

this project is supported by the

Great Lakes Restoration Initiative

Written by

Bilgenur Baloğlu

Bilgenur Baloğlu

Centre for Biodiversity Genomics, Guelph, ON, Canada

Christopher C. Marshall

Christopher C. Marshall

Department of Natural Resources, Cornell University, Ithaca, New York, USA

Lars Rudstam

Department of Natural Resources, Cornell University, Ithaca, New York, USA

David M. Lodge

David M. Lodge

Cornell Atkinson Center for Sustainability and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA

Edward DeWalt

Illinois Natural History Survey, Champaign, Illinois, USA

Paul W. Simonin

Paul W. Simonin

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA

Elizabeth Whitmore

Elizabeth Whitmore

Department of Natural Resources, Cornell University, Ithaca, New York, USA

Lyubov Burlakova

Great Lakes Center, Buffalo State College, Buffalo, NY, USA

Kristy Deiner

Kristy Deiner

Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland

June 18, 2020

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected. 

Spring into action: Life in Earth’s rarest soils under threat

Spring into action: Life in Earth’s rarest soils under threat

Spring into action: Life in Earth’s rarest soils under threat

Springtails (Collembola) in the Antarctic indicate that unique soil biodiversity in the region faces biotic homogenization due to increased human activity

Invasive springtail (Collembola) in sub-Antarctic soil.

PHOTO CREDIT: Laura Phillips

Efforts to understand and protect Earth’s biodiversity have largely overlooked life present in the soil. However, soil biodiversity is critical to ecosystem health, playing an integral role in nutrient cycling, carbon storage, water filtration, and food production1.

The Antarctic, once a pristine wilderness, is undergoing rapid environmental change and increased human pressures. Yet the true diversity, uniqueness, and vulnerability of its soil communities are only beginning to be revealed. As tourism and science expeditions bring ever more passengers and cargo to Antarctica, human-induced transport of species (‘biological invasion’) – both into and throughout the region – presents a growing threat to soil biodiversity, as highlighted recently in our study.

The Antarctic terrestrial biome near McMurdo station. PHOTO CREDIT: Helena Baird

In the Antarctic region, which broadly covers approximately 30% of the planet’s surface, soil organisms represent the vast majority of terrestrial life. Antarctic soil organisms, which include nematodes, mites, springtails, fungi, and tardigrades, have eked out a largely isolated existence over millions of years in fragmented patches of ice-free land on the continent, or on the sub-Antarctic islands.

On the Antarctic continent, ice-free soil represents <1% of the total land area and can be found on mountain tops, scree slopes, valleys, and the coast. The sub-Antarctic islands encircle the continent, located in the frigid waters of the Southern Ocean and each is separated by up to thousands of kilometres of open ocean. Antarctic soil species are therefore highly isolated and possess unique adaptations to their harsh environment. They are at risk of being outcompeted, or ultimately even replaced, by invasive species as the climate warms2.

LEFT: Helena Baird and colleagues busy with sub-Antarctic fieldwork on Marion Island while king penguins watch in the background. RIGHT: Soil sampling with the use of a soil core – an undisturbed cylindrical sample.
PHOTO CREDIT: Charlene Janion-Scheepers

In our study, we used DNA barcoding to investigate the spread of an invasive springtail species, known to adversely affect native soil species, across the sub-Antarctic islands. Identification of numerous divergent barcode sequences revealed that the invasive has been introduced to Antarctica several times.

By comparing barcodes from Antarctic specimens in BOLD to those found elsewhere in the world, we could identify genetic lineages shared across countries which aligned with known shipping routes to the Southern Ocean, highlighting the utility of molecular tools in tracking invasion. For example, a shared barcode haplotype between Norway and the sub-Antarctic island of South Georgia accords directly with Norway’s long history of whaling on this island. That a well-known invasive species has been introduced on multiple occasions to such a remote region emphasises the importance of ongoing biosecurity monitoring, even for invasive species that have already established, since multiple invasions can introduce more genetic resilience and enable the invasive species to spread.

Research vessel as it approaches Possession island, Crozet archipelago, one of the sub-Antarctic islands in the region. PHOTO CREDIT: Helena Baird

Charlene Janion-Scheepers (left) and Helena Baird (right) sort soil species at sea using Berlese funnels.
PHOTO CREDIT: Steven Chown

Our study also explored the consequences of intra-regional human transport on native soil species. Antarctic soil organisms are typically highly endemic, even to local patches within the region. This raises the concern that increased human traffic throughout Antarctica could transport and ultimately homogenise soil populations, altering the region’s unique biogeography. Using genome-wide SNPs, we showed that a widespread native springtail species is indeed so distinct between sub-Antarctic islands that it is likely in the process of speciating. Clearly, future exchange of individuals among islands could possibly disrupt this biodiversity process, diluting the specific adaptations each population has evolved over millennia. Potential evolutionary consequences include a decrease in the fitness of island-specific populations, lineage extinction, or the loss of biodiversity by ‘reverse speciation’3.

Regardless of the outcome, the threat of disrupting biodiversity processes among these unique and fragile islands emphasises the importance of biosecurity for ships travelling throughout the Southern Ocean, particularly when passengers embark and disembark at multiple locations.

Taking a break to enjoy the view in the sub-Antarctic. PHOTO CREDIT: Helena Baird

One of the main hurdles to accurately predicting future changes to soil communities is a lack of basic biodiversity knowledge. In the Antarctic, molecular work such as metabarcoding continues to reveal far more soil diversity – most of which is locally endemic – than previously recognised4,5. This situation echoes worldwide, with biodiversity and biogeography patterns constantly revised as we probe the soil biome deeper. Fortunately, schemes such as the Global Soil Biodiversity Initiative are bringing fragile soil ecosystems under the spotlight, where we will be better served to protect them.

References:

1. Bardgett RD & van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515. 2. Janion-Scheepers C, Phillips L, Sgrò CM, Duffy GA, Hallas R & Chown SL (2018) Basal resistance enhances warming tolerance of alien over indigenous species across latitude. Proceedings of the National Academy of Sciences, 115. 3. Seehausen O (2006) Conservation: losing biodiversity by reverse speciation. Current Biology, 16. 4. Czechowski P, Clarke LJ, Cooper A & Stevens MI (2016) A primer to metabarcoding surveys of Antarctic terrestrial biodiversity. Antarctic Science, 1-13. 5. Velasco-Castrillón A, McInnes SJ, Schultz MB, Arróniz-Crespo M, D’Haese CA, Gibson JAE, . . . Stevens MI (2015) Mitochondrial DNA analyses reveal widespread tardigrade diversity in Antarctica. Invertebrate Systematics, 29.

Read the complete manuscript in Evolutionary Applications.

Read more news about the Antarctic:

NEW AUSTRALIAN PROGRAM TO SECURE FUTURE FOR ANTARCTICA’S ENVIRONMENT AND BIODIVERSITY

The Australian Government has awarded $36 million to a new research program led by Monash University, Securing Antarctica’s Environmental Future (SAEF).

Related articles

THE DEEP CONNECTION BETWEEN SOIL MICROBES AND TREES: DNA METABARCODING AND REFORESTATION

by Katie McGee and Mehrdad Hajibabaei | May 23, 2019

RESIDENT OR INVASIVE SPECIES? ENVIRONMENTAL DNA CAN PROVIDE RELIABLE ANSWERS

by Natalia Ivanova, Manuel Elías-Gutiérrez and Martha Valdez-Moreno | May 15, 2019

DISCOVERING FIJI’S NATIVE BEES: HIDDEN SECRETS IN A BIODIVERSITY HOTSPOT

by Cale Matthews et al. | Apr 30, 2019

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected. 

Reflections on conducting fieldwork in Nunavut, Canada

Reflections on conducting fieldwork in Nunavut, Canada

Reflections on conducting fieldwork in Nunavut, Canada

The opportunities and challenges of working in the Arctic as part of the Arctic BIOSCAN project

By Crystal Sobel

Carter Lear and Jaiden Maksagak (left to right) venturing across the tundra in search of insects

PHOTO CREDIT: Andrea Dobrescu

What do you think of when you hear the word ‘Arctic’? Do you picture snow and ice, freezing temperatures, vibrant communities, and animals like the polar bear and Arctic fox?

Ice breaking apart on Ferguson Lake, Northwest of Cambridge Bay, Nunavut
Photo credit: Crystal Sobel
Polar Bear walking around Churchill, Manitoba during the Arctic summer
Photo credit: Thanushi Eagalle

Not everyone is able to experience first-hand the vast tundra or see people fishing for Arctic char as they travel down the river to the ocean. I hope to share my impressions as a visitor to the Arctic, through my fieldwork as a research technician for the Arctic BIOSCAN (ARCBIO) project.

Beautiful sky views and summer flowers at Long Point, Victoria Island, Nunavut
Photo credit: Crystal Sobel

ARCBIO is a partnership between the Centre for Biodiversity Genomics (CBG) at the University of Guelph and Polar Knowledge Canada (POLAR) that aims to carry out biodiversity assessments in the Kitikmeot Region of Nunavut. Teams of researchers and technicians have been sent from the CBG to Nunavut for eight weeks spanning July and August in the summer to collect and catalogue plants and animals.

I play a major role in the planning and logistics for ARCBIO’s field expedition which includes working out how to transport and assemble the equipment required to collect and catalog insects, plants, and small mammals for an entire field season involving more than 14 researchers.  Careful planning is crucial to order and organize the more than 70 different pieces of equipment — Malaise traps, sifters, nets, forceps, camera gear, labels, collecting bottles, etc. — as it all needs to be in place at our research sites in time for our arrival at the start of field season.

Flying to Nunavut from Ontario involves three flights over two days. But once you arrive, the land is truly a sight to behold. It is like no other place on Earth; its beauty magnified by the midnight sun and the countless tundra flowers covering the landscape.

Tundra landscape in full bloom in July. Cambridge Bay, Nunavut
Photo credit: Crystal Sobel

In 2018 and 2019, my Arctic travels were focused in Iqaluktuuttiaq (Cambridge Bay), Nunavut whose location on Victoria Island along the Northwest Passage has made it a key port for passengers and research vessels. The Inuit have been residing in this region for over 4,000 years, naming the area Iqaluktuuttiaq meaning ‘good fishing place’ in Inuinnaqtun, the traditional language of the area, for its abundance in Arctic char.

My colleagues and I worked at the magnificent new Canadian High Arctic Research Station (CHARS). Run by POLAR staff, the station has several research and teaching spaces including a very impressive necropsy lab that has enough space to dissect whales. Dorm style lodgings are available for visiting researchers, with a facility building full of fieldwork equipment from ATVs to scuba gear to snowmobile suits.

After arriving at a sampling site North of Long Point, Nunavut, we took in the incredibly vast view of the tundra
Photo credit: Crystal Sobel
ATV transport is the best way to get around on the rugged tundra terrain. Ovayok Territorial Park, Nunavut
Photo credit:Alex Borisenko
Mikko Pentinsaari and Alex Borisenko (left to right) are searching for insects in the leaf litter sample collected from the tundra back at the CHARS facility
Photo credit: Crystal Sobel
In addition, the CHARS staff are incredibly friendly and an indispensable resource for a successful field season providing logistical support to advice on field site selection. The POLAR staff were particularly instrumental in helping us collect aquatic samples.
Researchers surveying the land for sampling sites on the Northside of Grenier Lake, Nunavut

Photo credit: Crystal Sobel

There are no docks to park your boat out on Grenier Lake, Nunavut
Photo credit: Crystal Sobel
Everyone is having a great time travelling along Grenier Lake in their survival suit gear
Photo credit: POLAR staff
Coming from Southern Ontario, I dressed in many layers of clothing including quick-dry field pants, gloves, short-sleeve shirt, long-sleeve shirt, sweater, windbreaker jacket and, when needed, a rain jacket and pants. And don’t forget a toque (I did!). A cozy hat is key to keeping your head and ears warm against the unrelenting wind coming off the Arctic Ocean. But perhaps the most important article of clothing is the very stylish bug net hat.
Keeping the mosquitoes away with a stylish bug net hat!
Photo credit: Crystal Sobel

We were also very fortunate to have hired two youth in Cambridge Bay for our 2019 field season. Jaiden Maksagak and Carter Lear helped with insect monitoring by setting up traps, collecting samples, and recording data. Having a keen interest in the sciences, they were eager to gain experience by working with us.

Carter Lear and Jaiden Maksagak (left to right) venturing across the tundra in search of insects
Photo credit: Andrea Dobrescu
Jaiden Maksagak attaches a collecting bottle to the Malaise trap, which passively collects flying insects
Photo credit: Crystal Sobel
Jaiden Maksagak (left), Andrea Dobrescu (bottom right) and Alana Tallman (top right) work together to set up an insect trap transect line with pitfall traps and samples of soil to be sifted through
Photo credit: Crystal Sobel

Our team also conducted field work in Kugluktuk for the 2019 summer field season. Kugluktuk, meaning ‘place of moving water’, is situated on the northern edge of the mainland of Canada and is the westernmost community in Nunavut. Here, we worked with two wildlife guides, Thomas Bolt and Dettrick Hokanak whom helped with monitoring for bear activity and site set up as well as with servicing of the insect traps.

Thomas Bolt and Dettrick Hokanak (left to right) were our incredibly helpful guides in Kugluktuk, Nunavut
Photo credit: Crystal Sobel

In both Iqaluktuuttiaq and Kugluktuk, we sought guidance from Nunavut’s Hunters and Trappers Organization (HTO) who provided us with local wildlife guides, bear monitoring services, and recommended great science-minded youth from the community who worked with us as science rangers. We were grateful for the knowledge they shared with us and for the opportunity to share aspects of our research work with their communities on Nunavut Day.

A Malaise trap, used to collect flying insects, contrasts with the beautiful tundra sky and landscape
Photo credit: Crystal Sobel
During the Nunavut Day celebrations, we were able to share the wonderful world of insects with children and adults. We set up displays in both communities that showcased the many shapes and sizes of insects, their life cycles as well as highlight which ones are beneficial to humans, and which ones are pests. I always enjoy seeing kids get wide-eyed with excitement when they see our insect displays.
Local community members demonstrate the making of bannock, a traditional food from the region during Nunavut Day 2018, Cambridge Bay, Nunavut
Photo credit: Crystal Sobel

The kids enjoyed our giveaways which included informational pamphlets, bookmarks, postcards, buttons and other fun items about animals and how DNA barcoding works. I enjoyed learning a few words in Inuktitut from them, such as nuna for land, tuluaq for crow, and hikhik for ground squirrels. I believe that it’s very important to democratize science, involve local communities in research projects, and make data available to the public including the people making decisions that could impact ecosystems and their biodiversity. We need sensitive tools to understand how Arctic environments are changing and give us insights into what we can do to solve problems. DNA barcoding arctic diversity, this is what ARCBIO is all about.

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected. 

Starving for data and more: what rangers and scientists stand to learn from one another in South Africa

Starving for data and more: what rangers and scientists stand to learn from one another in South Africa

Starving for data and more: what rangers and scientists stand to learn from one another in South Africa

A one-year pilot biomonitoring program in Kruger National Park, South Africa – the Kruger Malaise Program – reignites rangers' energy about biodiversity conservation.

Silhouette of a giraffe in Kruger National Park, South Africa

PHOTO CREDIT: Michelle D’Souza

Insect biodiversity is understudied and often underappreciated. As evidence for large-scale insect declines emerge, there is an increasing need to address the extreme lack of data on the general ecology and population dynamics of most insect groups. Charismatic species, such as the iconic monarch butterflies (Danaus plexippus) of the Americas, are one of the few exceptions.

Closely related to the migratory Danaus plexippus, the non-migratory monarch species – Danaus chrysippus – is found in the warm climate of the African continent.
PHOTO CREDIT: Johandre van Rooyen

The caterpillars of the Emperor moth (Gonimbrasia belina) are just as iconic and societally relevant on the African continent. Locally referred to as ‘mopane worms’ after the mopane trees upon which they primarily feed, these insects have been a vital source of protein for generations. A mopane caterpillar contains on average 50 per cent protein1, a higher percentage than the average steak.

In recent years, mopane caterpillars have also provided an important source of income for many rural communities. It has been estimated that 9.5 billion caterpillars are harvested annually in Southern Africa’s 20,000 km2 of mopane forest. The ability to predict mopane caterpillar outbreaks in space and time becomes increasingly valuable, particularly for rural communities living along the borders of national parks, who rely heavily on natural resources to supplement their livelihood.

Mopane worm harvest in Kruger National Park, South Africa.
PHOTO CREDIT: Louise Swemmer

Local community members harvesting mopane worms in the Kruger.
PHOTO CREDIT: Louise Swemmer

Since 2010, permit-based harvesting projects have taken place in some South African National parks to share benefits and build positive relationships between the parks and their neighbouring communities. With the declining occurrence of mopane caterpillars outside of protected areas due to habitat change and over-harvesting, and the overall erratic nature of recent outbreaks, neighbouring communities risk losing an important source of food and income.

A better understanding of insect dynamics has the potential to inform the sustainable harvest of natural resources such as the mopane caterpillar, but it also tells us a lot more.

A pilot insect biomonitoring program in Kruger National Park, South Africa – the Kruger Malaise Program – is already demonstrating implications for natural resource harvesting, as well as agricultural pest and disease management. Perhaps even more significant, it has reignited energy in park rangers about biodiversity conservation.

One of 26 Malaise traps sampling insects in Kruger National Park with the Kruger Malaise Program.
PHOTO CREDIT: Ryan Rattray

The Kruger Malaise Program (KMP), a year-long monitoring effort, was undertaken in Kruger Park from May 2018 to June 2019. With the main goal of understanding insect diversity and seasonal variation, the program deployed 26 Malaise traps that sampled the flying insect community in all 22 sections of the park. Traps were set up within each section ranger’s property, and rangers were tasked with organizing and maintaining weekly sample collections. The samples were then retrieved in four large batches over the year by staff from the African Centre for DNA Barcoding (ACDB) in Johannesburg, South Africa, where they were packaged and shipped to the Centre for Biodiversity Genomics (CBG) in Guelph, Ontario, Canada for DNA barcode analysis. This program was only possible due to the collaborative efforts of park rangers and staff, researchers at the Savanna & Arid Research Unit in Skukuza, Kruger, and scientists at the ACDB and CBG.

The African Centre for DNA Barcoding (ACDB) team after collecting the last Malaise trap at the end of the KMP in June 2019: Zandisile Shongwe, Nolo Sello, Michelle van der Bank (ACDB Director), Ross Stewart, Jonathan Davies (top left to right), Johandre van Rooyen (bottom).
PHOTO CREDIT: Nolo Sello

With sampling now complete, analysis has begun in earnest. So far, more than 260,000 specimens have been processed, and 170,000 have been sequenced.  Preliminary results have delivered barcode coverage for 9,000 species including various agricultural pests (e.g., the olive fruit fly (Bactrocera oleae), and the rusty plum aphid (Hysteroneura setariae)) as well as several vector species known to transmit the bluetongue and African horse sickness viruses (e.g., Culicoides imicola) and West Nile Virus (Culex perexiguus). When compared against the DNA barcode database (BOLD Systems) of more than 600,000 species, almost half of the insect diversity uncovered by the program so far is only found in Kruger.

Based on species accumulation rates, it is likely that 25,000 species will be recorded in the park. This number represents more than half of the species previously reported from South Africa2, and quarter of those described in sub-Saharan Africa3.

Selection of specimens collected from the Kruger Malaise Program.
PHOTO CREDIT: CBG Imaging Lab

The Kruger Malaise Program reveals just how quickly DNA barcoding can provide in-depth and broad-scale information for regions where past research has largely been focused on particular taxonomic groups.  While one of the only comprehensive field guides for insects in South Africa contains 1,200 species – those that are ‘abundant, widespread, conspicuous, large or unusual’ – the Kruger Malaise program has largely uncovered the rare, small, inconspicuous, yet ecologically important, species.

In 2013, SANParks developed a biodiversity monitoring strategy but its activation has been very mixed across the 19 parks. Some began their monitoring efforts by focusing on rare species, while others used key indicator groups. But there have been no standardized techniques implemented across all parks, and there has been little monitoring of insects at a large scale, mainly because of the lack of taxonomic expertise. A program involving DNA technology makes large-scale biomonitoring of these national parks possible.

The KMP has been a huge success with the next steps set to fine tune logistics before its expansion to other parks and, ideally, to identify specific sites in Kruger for ongoing monitoring. The program also provided a test bed for TRACE (Tracking the Response of Arthropod Communities to Changing Environments), a major research theme within the 7-year, $180 million BIOSCAN program. Its success has demonstrated the feasibility of extending this work in other national parks within South Africa and on a global scale. In doing so, BIOSCAN will lay the foundation for a DNA-based global biodiversity observation system, similar to the monitoring systems that have been recording weather patterns since the 1800s. BIOSCAN has a grand vision, one that is necessary if we are to truly identify, understand, and manage the global decline in insects.

The park rangers and staff who managed the Malaise traps in Kruger National Park.
PHOTO CREDIT: Michelle D’Souza

But if you ask the people working in Kruger, the KMP was more than a biodiversity monitoring program. Most rangers start out as nature conservation and zoology students, but anti-poaching efforts are so time consuming that their roles have gone from biodiversity managers to single-species protectors. The KMP has not only sparked interest and reignited energy in the park rangers about their conservation work, it has engaged and valued the observational and experiential data that rangers have to offer, such as stories and strategies related to the mopane caterpillars.

In this way, the KMP has made a very big impact – and that is the true beauty of the program – its ability to spur interest in insect life, and the patterns and processes that define our world.

Please feel free to contact Michelle D’Souza, the KMP project manager, if you have any questions about the program: mdsouza@uoguelph.ca

References:

1. Glew RH, Jackson D, Sena L, VanderJagt DJ, Pastuszyn A and Millson M (1999) Gonimbrasia belina (Lepidoptera: Saturniidae): a Nutritional Food Source Rich in Protein, Fatty Acids, and Minerals. American Entomologist 45(4): 250–253

2. Scholtz CH and Chown SL (1995) Insects in southern Africa: how many species are there? South African Journal of Science 91:124–126

3. Miller SE and Rogo LM (2002) Challenges and opportunities in understanding and utilisation of African insect diversity. Cimbebasia 17:197–218

Written by

Michelle L. D'Souza

Michelle L. D'Souza

Centre for Biodiversity Genomics, Guelph, ON, Canada

Danny Govender

Danny Govender

General Manager: Savanna and Arid Research Unit, South Africa

June 12, 2019
doi: 10.21083/ibol.v9i1.5471

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected. 

University of Sindh Jamshoro Barcodes Grasshoppers in Pakistan’s Thar Desert

University of Sindh Jamshoro Barcodes Grasshoppers in Pakistan’s Thar Desert

University of Sindh Jamshoro Barcodes Grasshoppers in Pakistan’s Thar Desert

Tracking the shift of non-pests to crop pests, a phenomenon accelerated by anthropogenic pressures in the Thar Desert.
The Thar Desert is considered the seventh largest desert in the world and the third largest in Asia. Although this desert is rich in unique biodiversity, efforts to explore and analyze its fauna and flora have been minimal. The desert harbours some important crop pests, particularly orthopterans, by providing them alternate host plants, overwintering space, and environments for reproduction. The region provides favourable soil and environmental conditions for the survival of Acridids (grasshoppers and locusts). In particular, it supports the reproduction, development, and outbreak of the desert locust; the gregarious phase of locusts results in attacks on neighbouring regions that cause severe loss to crops and forests.

Cattle grazing in the Thar region.
Photo credit: Ahmed Ali Samejo

Around 20,000 orthopterans have been described in the world including 1,750 from India, but the number of known species in Pakistan is merely 161. Our recent surveys of the Thar region have revealed 29 species of grasshoppers that are new to the country indicating the rich grasshopper diversity of this desert.

With expanding agricultural fields, overgrazing and desertification, and changing ecological conditions, biodiversity is also changing. These changes are pushing non-pests to become crop pests, a phenomenon that warrants further investigation using reliable identification methods. An effective, preventive management strategy of these pests relies on an improved knowledge of their biology and ecology, and on more efficient monitoring and control techniques. The Department of Zoology at the University of Sindh Jamshoro has taken initiative to document and understand the grasshopper fauna in the Thar Desert by coupling DNA barcoding with conventional taxonomy.

Field surveys in the Thar Desert with Kumar, Riffat, & Samejo (left to right).
PHOTO CREDIT: Ahmed Ali Samejo

With funding support from the Higher Education Commission (HEC) Pakistan, the department plans to develop a DNA barcode reference library for grasshoppers in the Thar Desert of Pakistan. Grasshopper collection and specimen identification is already in progress and, so far, 2,334 specimens have been identified to 22 species while the identity of 300 specimens is yet to be resolved. After the front-end processing (data-basing, imaging, tissue sampling) at the University of Sindh Jamshoro is complete, the identified specimens will be barcoded at the Centre for Biodiversity Genomics, University of Guelph.

This is the first effort towards understanding grasshopper diversity in the Thar using DNA methods and developing a reliable reference library for this important group of pest insects. The generated data will not only be used for the rapid identification of grasshoppers and locusts, it will also provide a useful tool for pest management and biodiversity conservation.

Written by

Riffat Sultana

Riffat Sultana

Department of Zoology, University of Sindh Jamshoro, Pakistan

April 7, 2019
doi: 10.21083/ibol.v9i1.5491

Comments

Read more about Pakistan:

SMALL STEPS LEAD TO BIG INITIATIVES: PAKISTAN REAFFIRMS SUPPORT FOR IBOL BY LAUNCHING PAKBOL

From economically important insect species to plants to food security, Pakistani researchers are working to barcode all life in their country through a national initiative – PakBOL.

DNA BARCODING WILD FLORA IN PAKISTAN’S FORESTS

Preserving voucher specimens and creating a virtual herbarium to understand and protect some of the oldest living trees on the planet.

Don't Miss Out!

Subscribe to the iBOL Barcode Bulletin for updates on DNA barcoding efforts, the iBOL Consortium, and more.

comment on this article

The Barcode Bulletin moderates comments to promote an informed and courteous conversation. Abusive, profane, self-promotional, or incoherent comments will be rejected.